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Natural convection in an enclosed vertical air layer 
with large horizontal temperature differences 

By D. R. CHENOWETH AND S. PAOLUCCI 
Applied Mechanics Department, Sandia National Laboratories, 

Livermore, CA 94550, USA 

(Received 29 July 1985 and in revised form 30 January 1986) 

Steady-state two-dimensional results obtained from numerical solutions to the 
transient Navier-Stokes equations are given for laminar convective motion of a gas 
in an enclosed vertical slot with large horizontal temperature differences. We present 
results for air using the ideal-gas law and Sutherland-law transport properties, 
although the results are also valid for hydrogen. Wide ranges of aspect-ratio, 
Rayleigh-number and temperature-difference parameters are examined. The results 
are compared in detail with the exact solution in the conduction and fully developed 
merged boundary-layer limits for arbitrary temperature difference, and to the 
well-established Boussinesq limit for small temperature difference. It is found that 
the static pressure, and temperature and velocity distributions are very sensitive to  
property variations, even though the average heat flux is not. I n  addition we observe 
a net vertical heat flux to be the same as that obtained from the Boussinesq equations. 
We concentrate on the boundary-layer regime, but we present a rather complete 
picture of different flow regimes in Rayleigh-number, aspect-ratio and temperature- 
difference parameter space. We observe that, with increasing temperature difference, 
lower critical Rayleigh numbers for stationary and oscillatory instabilities are 
obtained. In  addition we observe that in some cases the physical nature of the 
instability changes with increasing temperature difference. 

1. Introduction 
Although gas gaps between vertical parallel walls have been used for many decades 

to  reduce heat transfer, their use with large horizontal temperature differences has 
become increasingly important during the last two decades. Examples of typical 
applications include insulation using double-pane windows or double walls, nuclear 
reactors, fire within buildings, solar collectors, and electronic components in 
enclosures. Still, the majority of the published investigations involve small 
temperature differences where gas properties are taken to be constant and the 
Boussinesq limiting equations are valid. Some of the known non-Boussinesq 
analytical and experimental results are briefly discussed here prior to describing 
our current numerical solutions. 

Hara (1958), and Sparrow & Gregg (1958) gave analytical results for a vertical flat 
plate with large temperature differences. I n  general their results are not applicable 
to  the vertical slot; however, we will show how the heat transfer results can be 
adapted to our problem. Polezhaev (1967) used equal Sutherland laws for dynamic 
viscosity ,u and thermal conductivity k (constant Prandtl number when the hcat 
capacity a t  constant pressure is constant) in his numerical solution of the compressible 
Navier-Stokes equations ; he used a relatively small temperature-difl'erence parameter 
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of E = 0.2 and slot aspect ratios of unity. Here E is defined as the difference between 
the hot and cold wall temperatures divided by their sum. Rubel & Landis (1970) made 
an expansion in terms of E to obtain first-order corrections to the zeroth-order 
Boussinesq results. Rubel & Landis included fluid property variations by means of 
temperature power-law expressions and they assumed that the pressure was indepen- 
dent of the temperature difference as well as other parameters. Leonardi & Reizes 
(1979, 1981) also numerically solved the compressible Navier-Stokes equations using 
equal Sutherland laws for ,u and k ;  however, they did examine cases where larger 
temperature differences were involved ( E  < 0.6), and they studied only aspect ratios 
of 1 and 2, although some of their results, as will be discussed later, are suspect. 

Experimental studies using gases with large temperature differences have been 
equally sparse. Eckert & Carlson (1961) did investigate the high-aspect-ratio problem, 
but they only examined cases where E < 0.13, so that the Boussinesq solution is 
approximately valid for their results. Similarly, all of the Mordchelles-Regnier & 
Kaplan (1963) experiments in the laminar region were in the Boussinesq regime, 
although they did obtain some turbulent non-Boussinesq results for a single flat 
plate. More recently, Duxbury (1979) obtained experimental results covering a wide 
parameter range in the steady laminar regime, but with e < 0.15. It is not clear to 
what extent the above experimental studies were affected by heat losses from the 
ends. 

Chenoweth & Paolucci ( 1985) investigated the steady-state fully developed 
boundary-layer region for large temperature differences between vertical isothermal 
walls. They derived some exact laminar solutions to the NavierStokes equations for 
perfect gases with the properties described by unequal Sutherland laws. They 
produced variable Prandtl-number results for 0 < E < 1.0 using air as an example, 
although the accuracy of the Sutherland-law conductivity degrades rapidly above 
E = 0.6. This paper also uses unequal Sutherland-law transport properties and a 
perfect gas equation of state to produce large temperature difference results for air. 
Numerical solutions of the transient Navier-Stokes equations are used to generate 
laminar steady -state results primarily in the independent boundary-layer region and 
the developing merged boundary-layer region. However, other flow regions are also 
covered to the extent necessary to construct a better understanding of the entire 
laminar parameter range for all aspect ratios greater than or equal to  unity. We point 
out that the need to construct a map of flow regions in parameter space, which 
includes stationary and oscillatory stability boundaries, necessitated the use of the 
transient form of the equations. 

I n  $02 to 4 we present the governing equations and outline the algorithm for their 
numerical solution. We follow in $5 with a discussion of the different flow regions 
possible in this problem. I n  $6, expressions for pressure and heat flux are derived from 
constraints of the problem. An extensive validation of the computer program is 
reported in $7 .  Finally, in $8, we present non-Boussinesq results in the boundary-layer 
region, and conclude in $9 by comparing our results with those of others. 

2. Governing equations 
Consider a two-dimensional rectangular enclosure of width L and height H which 

contains a gas. The gas is initially quiescent at a uniform temperature T, and pressure 
p, .  The walls of the vessel are initially at the same temperature T,. At times larger 
than zero, the left and right walls are maintained at temperatures of Th and T,, 
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u = v = o  

a T p y  = 0 
y = A  

u = u = o  

u = v = o  

T =  1--E 

x = l  
u = u = o  

aTlay = o 
FIQURE 1. Problem definition. 

respectively, where Th > T,. The top and bottom walls are insulated. The above 
problem is illustrated in figure 1, where we have used the following non- 
dimensionalizations (starred quantities are dimensional) : 

vi* = uv,, 
L 

x$ = Lx,, t* = u t ,  I 
The independent dimensionless parameters appearing in the problem are 

In  (2.1)-(2.2), zero subscripts denote the initial dimensional values; the reference 
speed U is defined to be the thermal diffusion speed, i.e. U = a, /L;  v, and a. are 
the kinematic viscosity and thermal diffusivity, respectively, while p, and k, are the 
dynamic viscosity and thermal conductivity respectively; p ,  is the pressure; c, is the 
sound speed; cpo and cv0 are the specific heats at constant pressure and volume, 
respectively; and lastly g is the magnitude of the gravitational field. Note that 
AT = Th - T,  and we choose Th and T, such that T, = f(Th + T,). The dimensionless 
parameters in (2 .2)  are the aspect ratio, the wall temperatures differential, the ratio 
of specific heats, the Prandtl number, the Rayleigh number and the Mach number 
respectively. 

The problem evolves in time t and can be described in terms of the velocity 
components v, = (u, v )  in the x, = (2, y) directions, the density p,  temperature T, and 
pressure p. The governing equations are statements of conservation of mass, 
momentum and energy, with the addition of a state equation describing the gas. These 
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equations, valid under a small-Mach-number approximation, have been derived by 
Paolucci (1982) and are given as follows : 

ap a v  -+Pg = 0 
at ax* 

apvi a an RaPr a 
at axj axi 2€ axj -+- (pvj ?Ii) = --+- pni  + Pr - ri3, (2.4) 

P = P ( P >  T ) ,  (2.6) 

where 17 = p(’) / (yMa2) is a reduced pressure which accounts for the hydrostatic and 
dynamic effects, p ( l )  is the second term in the Mach number expansion of p and is 
O(Ma2) ,  ni is the unit vector in the direction of gravity, rij is the viscous stress tensor 
given by 

(2.7) 

6, is the Kronecker delta function, and r = (y-  l ) /y  is a measure of the resilience 
of the fluid. The thermal conductivity, viscosity and specific heat at constant pressure 
are functions of the thermodynamic variables. Note that the Mach number only serves 
as a scaling for the dynamic and hydrostatic components of pressure, and r only 
enters in the transient solution. 

The initial and boundary conditions expressed in dimensionless form are (see 
figure 1) : 

(2.8) ?J i (X j ,  0) = 0, P(0)  = 1, q x 3 ,  0) = 1, 

v,(O, y ,  t )  = Vi(1, y ,  t )  = V i ( X ,  0, t )  = V i ( X ,  A ,  t )  = 0, I 
aT aT 

T ( O , y , t ) =  1 + ~ ,  T ( l , y , t ) =  1 - 6 ,  - ( x , O , t ) = - ( x , A , t ) = O .  
aY aY 

The spatially uniform pressure p = p(O)(t) appearing in the energy equation and the 
equation of state, which represents the first term in the expansion ofp,  accounts for 
the change of the static pressure with time. The separation ofthe pressure components, 
holding under the small-Mach-number approximation, is the essence of the acoustic 
waves ‘filtering’ (Paolucci 1982); however, this splitting introduces p as an extra 
unknown. It can be shown that the equation for j7, obtained by a global mass 
conservation statement and the use of boundary conditions, is given by 

(2.10) 

where V is the volume of the cavity, /3 = - (ap/a!l’)F/p is the coefficient of volume 
expansion, and K = (ap/ajF),/p is the isothermal compressibility coefficient. 

a 
(2.11) 

If we let 

D = ( P V A  

then it can be shown that the continuity equation (2.3) is identically satisfied if the 
pressure component I7 is obtained from the following elliptic equation 

a2n a a 
-- - - I i i - -D ,  
axiaxi axi at 

(2.12) 
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a a Ra Pr 
R, = --(pvjvzli)+Pr-~7ij+- 2E pni7 

"j 

-PC v . - + ( ~ - c  
C P T  p jaxj 

i3T D = - [  1 
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(2.13) 

(2.14) 

3. Relations between state variables and transport properties 
For a real gas, the equation of state is 

p = ZpT,  (3.1) 

where Z is the compressibility factor normalized by its initial value; then (2.10) can 
be rewritten for this special case as 

where V and S denote the volume and surface of the cavity respectively. Note that 
with (3.2) the energy equation (2.5) is an integro-differential equation. 

I n  this paper we only present results for a n  ideal diatomic gas (2 = 1, c p  = 1, y = g) 
with a reference Prandtl number Pr = 0.71. The dimensionless thermal conductivity 
and viscosity are obtained using the Sutherland law forms 

@(l+S,) 

fi( 1 + S,) 

k =  
( T + s k )  ' 

'= (T+S,)  ' 

(3.3) 

(3.4) 

where White (1974) gives the dimensional values of S* = ST, for viscosity and 
conductivity for a variety of gases along with their corresponding ranges of validity. 
Although the local Prandtl number is constant when S,  = S, and the specific heat 
a t  constant pressure is constant, this simplification is not justified in many cases. 

Here we use dimensionless S values of 8, = 0.368 and S, = 0.648 (local Prandtl 
number not constant). As an example, when T, = 300 OK, Th = 480 OK and 
T, = 120 OK (E = 0.6), for air (Hilsenrath et al. 1960) the maximum viscosity error 
for the entire temperature range is less than 1 yo, that  for c p  is approximately 2 yo 
(at the hot wall), and the maximum error in k is near - 6 yo (at the cold wall). Equation 
(3.3) for air degrades rapidly above E = 0.6. 

It is interesting to note that the steady-state results given here apply as well to 
gases other than air, although the temperature range may be somewhat different. For 
example, at a reference temperature of 260 OK, hydrogen has a reference Prandtl 
number of 0.70, and S, = 0.372 and S,  = 0.641, so that the results should be 
approximately the same as those for air, but for different values of L, H and AT. 

4. Numerical algorithm 
4.1. The computational mesh 

The physical domain is discretized in the (z, y)-plane using three uniform interlacing 
meshes as shown schematically in figure 2. Through using an interlacing grid system, 
the amount of averaging to  obtain values of variables at locations where they arc 
not defined is reduced to  a minimum, thus improving accuracy. Furthermore, this 
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lattice structure enforces correct momentum balance of the discretized equations for 
every momentum cell, and the continuity equation has a unique exact form which 
can only be achieved by such a grid; this uniqueness is essential for deriving the 
discretized form of the Poisson equation (2.12). 

The positions of the grid points and their spacings are chosen such that the fluid 
boundaries lie halfway between scalar points ( x  ). Thus the top and bottom 
boundaries go through w points (a), and the vertical boundaries go through u points 
(0) .  Note that there is one layer of grid points outside the region of interest, as 
indicated in figure 2, to facilitate the application of boundary conditions. 

4.2. The numerical procedure 

We have solved (2.4), (2.5), (2.7), (2.12)-(2.14), and (3.1)-(3.4) on this staggered grid 
with an explicit predictor-corrector finite-difference method using forward differences 
for time derivatives and central differences for spatial derivatives, with a truncation 
error O(At, Ax2). The computational procedure is as follows: 

1. Velocity and scalar fields are known a t  time t n .  
2. Compute stable integration step Atn and advance time to tn+l.  
3. Obtain dp(tn)/dt and predicted pressure j7+ from (3.2). 
4. Solve, in order, for predicted density p+ from (3.1), reduced pressure li'+ from 

5 .  Using current values, obtain a corrected reduced pressure Un+l from (2.12) and 

6. The discretized energy equation (2.5) is integrated in conservative form to 

7 .  From p+ correct the static pressure pn+l by eliminating any global mass 

8. The velocity components are now calculated from w f + l  = ( p ~ ~ ) ~ + l / p ~ + l .  
9. Properties are re-evaluated to  reflect current thermodynamic conditions. 

A few comments arc in order regarding the above procedure. A stable integration 

(2.12). and momentum fluxes (pi)+ from (2.4). 

subsequently the momentum fluxes ( p ~ ~ ) ~ + l  from (2.4). 

obtain Tn+l. 

imbalance, and subsequently obtain the corrected density pn+' from (3.1). 

10. The process is repeated for the next integration step. 

timestep is obtained from 
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and 

where the maximum and minimum in (4.1) and (4.2) are obtained over all the grid 
points interior to  the computational region. For a single, linear, constant-property, 
convection-diffusion equation with no source term and with diffusion coefficient a,  
the stability restrictions are exactly given by (4.1) and (4.2), with a replacing the 
maximum and minimum in the two equations respectively (see Hindmarsh, Gresho 
& Griffiths 1984). Then, i t  can be shown that (4.1) is more restrictive when both 
lulAz/a,  IvlAy/a < 4, while (4.2) is more restrictive if both lu (Az /a ,  IvlAy/a > 4. 
Otherwise At is chosen from the minimum of (4.1) and (4.2). For variable properties, 
as in our case, both (4.1) and (4.2) must be always examined for the minimum At. 
Note that the restriction (4.2) due to convection is of the order of l / M a  larger than 
the one obtained if the acoustic waves had been left in the governing equations. 

The predicted and corrected reduced pressure lI+ and I F 1  are obtained from the 
discretized equation (2.12) using a direct Poisson solver (Adams, Swarztrauber & 
Sweet 1981). This is the most time-consuming part of the program. 

In problems which make use of the Boussinesq equations using primitive variables 
one must treat the divergence variable D defined by (2.11) carefully in solving the 
Poisson equation (2.12) in order to  avoid a numerical instability (Harlow & Welch 
1965; Hirt & Harlow 1967; Williams 1969). Note that in such a case D should be 
identically zero, as it is if one uses a stream-function treatment. However, because 
of round-off errors in solving (2.12) i t  is usually found that Dn =+ 0, and if this error 
is allowed to  persist, a numerical instability manifests itself. I n  problems where the 
divergence of the velocity field should be zero this difficulty is resolved by using the 
round-off divergence at one timestep as a correction term in the right side of (2.12) 
and requiring that Dn+' = 0. I n  our case D + 0 except in the Boussinesq limit, and 
in addition, because of any errors in the time integration of (3.2), we cannot guarantee 
global mass conservation either (note that in the Boussinesq limit, (3.2) is identically 
zero). This dilemma is resolved with the following strategy. 

In  step 5 of the procedure, the predicted reduced pressure and momentum fluxes 
are corrected using (2.12) and (2.4) so that the variables correctly satisfy the 
momentum equations and the continuity equation (2.3) locally. However, since exact 
integration of (3.2) (which accounts for pressure variations produced by expansion 
and compression of the gas) cannot be obtained, jT+ obtained in step 3 must be 
corrected to  ensure global mass conservation also. This is done by starting from the 
perfect-gas law (3.1) with 2 = 1 for a cell 

and computing the average density in the whole region 

Now if we let p;,* be the unknown exact local density (note that we know the exact 
global density) 

p+ + A p  
PF,j = P;,j+APt,* = ~ ' (4.5) 
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and make use of (4.4), wc obtain the following pressure correction necessary to give 
us global mass conservation 

where Ap = pe-p’ is obtained by summing (4.5) over the complete region. Thus the 
overall pressure is finally corrected as 

pn+l = p+ + Afj. (4.7) 

4.3. The boundary conditions 

The fluid velocity is prescribed on the boundaries of the cavity. This is done in two 
different ways: at those points lying on a boundary we fix the corresponding velocity 
component to have the desired value, e.g. u( 0 )  = 0 a t  x = 0 , l ;  for those components 
for which the computational points do not fall on a boundary, we force two interior 
points and the point exterior to the boundary to have the desired value by adjusting 
the velocity a t  the outside points by quadratic extrapolation. 

Temperature points do not lie on any boundary. Hence we force two interior points 
and the point exterior to  the boundary to yield a constant temperature on the vertical 
walls and a zero flux on the horizontal walls by quadratic extrapolations. 

I n  solving the discretized form of the Poisson equation (2.12), knowledge of the 
reduced pressure gradient normal to  the walls is required. A simple and popular choice 
is to set this gradient to zero similar to boundary-layer flows. For physical reasons 
no boundary conditions for n ought to be prescribed a t  the walls. A zero gradient 
normal to the walls, however, is not a bad approximation as long as the Rayleigh 
number is high, so that a boundary layer exists, and as long as this boundary layer 
is neither separated nor leaving the surface. Such is not the case in all wall regions 
of the cavity. A consistent and correct condition for the reduced pressure gradient 
is obtained by evaluating the momentum equations (2.4) a t  the walls. 

5. Flow regions 
The problem studied here (figure 1) is perhaps the most simple one possible 

involving convection heat transfer between two isothermal boundaries ; in spite of 
this apparent simplicity, the physical nature of the resulting flow regions, even a t  
steady state, can be an incredibly complex function of the three controlling 
independent dimensionless parameters A ,  Ra, and c (for fixed Pr) .  Information 
gathered from an excess of two hundred detailed flow-field computations is used to 
construct the flow-regions map shown in figure 3, where A versus Ra is given for 
1 < A < lo2 and lo2 < Ra < lo*. The solid lines for the Boussinesy limit c 4 1 
and the dashed lines for E = 0.6 which bound some of the regions, denote lines of 
stability. The limits of the boundary-layer regimes are given by the dot-dash and the 
dotted lines, for c << 1 and c = 0.6, respectively. The shaded region represents 
the unsteady transition to  turbulence for c 1, Correlations defining boundaries of 
the regions shown in figure 3 are given below. 

With the exception of the number of grids used as stated in table 2 regarding 
Richardson extrapolation, the bulk of computations were performed with a number 
of grids which varied with aspect ratio and Rayleigh number as given in table 1 .  Note 
that when a single number is given in the table, it implies that square grids were used. 
and when two numbers are given, the sccond number represents the number of grids 
used in the vertical direction. All computations were performed using uniform grids, 
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FIQURE 3. Flow regions dependence on A, Ra and s ;  lines of stability: -, E 4 1, ---, E = 0.6; 
boundary-layer regimes: -.- , € 4 1 ,  . . . . .  a ,  s = 0.6; dotted area denotes transition to 
turbulence. 

Ra 

41 61 81 81 
61 81 81 

LO, 1031 (103,1041 (104,1053 (105,10~1 (106,1071 (107,10*1 

101$ 
- ( ~ 3 1  21 t 

(5,101 
2 l x 6 l t  41x61 
21x81t 41 x81 61x81 81 - - 

A (3,51 

- - (10,100] 41x161 41x161 41x161$ 41x161$ 

t To obtain accurate pressure and heat transfer results in the near-conduction region as many 
as 81 x 81 grids were found necessary for 1 < A < 3, and 41 x 161 for 3 <  A < 10. 

$ To obtain enough resolution to determine the transition to oscillatory instabilities for A = 1 
and 2, a non-uniform grid of 61 x 61 with a grid size ratio of G = 0.03 between the minimum and 
maximum in both directions was used for Ra = lo7, 101 x 101 and G = 0.3 for lo7 < Ra < 4 x lo', 
and 121 x 121 and G = 0.2 for Ra > 4 x lo7. For A = 20 and lo4 < Ra d lo6, 61 x 161 grids with 
C = 0.3 was used. 

TABLE 1. Grids used as a function of A and Ra. 

except as noted in the table, where the non-uniform grid distribution described by 
Paolucci (1986) was used. 

The most familiar flow region, often called the boundary-layer region, is charact- 
erized by independent (non-interacting) boundary layers on the hot and cold walls ; 
here the boundary layers are separated by a nearly stagnant core which always 
displays an approximately linear vertical thermal stratification. The boundary-layer 
region exists primarily (although not exclusively) for low aspect ratios, 

12(1+4€) 
A Ra0.25e ' 

and for Rayleigh numbers in the range 

7 x 103(A-0.6) c Ra c 104A ( 5 . 2 ~ )  
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8 x 106A-'.' + 5  x 103(&A)6 
4.5 x 1O3(A-O.6) < Ra < 

1 + , (5 .2b )  

for E = 0.6. The upper limits in ( 5 . 2 a ,  b )  represent critical Rayleigh numbers, since 
above those limits the flow no longer reaches a steady state. When Ra is increased 
significantly above these critical values, the flow becomes increasingly unsteady and 
eventually becomes turbulent. The focus of this paper is primarily concerned with 
laminar convection. However, accurate detailed results for A = 1 and Ra = lolo, 
computed from first principles with no empirical turbulence model, are presented in 
another paper (Paolucci 1986). 

Below the lower limit of the independent boundary-layer region and for 

400[A(1-e3)-2] < Ra < 7 x  1O3(1-e2)(A-O.6), (5.3) 

and aspect ratios approximately in the range (5.1), the velocity boundary layers are 
interacting to an increasing degree as the value of Ra is decreased. Finally for 

~a < 4 o o [ ~ ( i  -631-21, (5.4) 

fully developed merged boundary layers exist near the mid-height of the slot. A t  that 
point both velocity and temperature are within 3 % of universal profiles which are 
independent of the vertical coordinate. As the aspect ratio is increased further, the 
fully developed profiles exist in a region whose size is proportional to A ,  since the 
development regions near each end remain nearly fixed in size for given Ra and 6. 

The fully developed region is centred about ;A for small Ra, but for non-Boussinesq 
cases, when Ra is near the critical value of 5760(1+0.434~)-~ and A > 11, it may 
be centred significantly below $4, since near that limit the bottom development region 
is approximately half that found at the top of the slot. 

For aspect ratios greater than 12-15, if the critical Rayleigh number of 
5760( 1 +0.434~)-~ is exceeded, another type of instability can appear. This instability 
is characterized by standing waves and gives rise to multicellular flow inside the 
primary roll. Then combinations of large and small cells cover the entire slot and 
increase in strength with increasing Ra. The number and size of these cells depend 
on A ,  Ra and E .  We note that in the Boussinesq limit these cells are approximately 
the same size, their number depends only on aspect ratio, and their strength increases 
with increasing Ra (Lee & Korpela 1983). This multicellular motion is completely 
steady. 

In  the Boussinesq limit, as the Rayleigh number is further increased, a region of 
reverse transition from multicellular to unicellular flow exists. This region is bounded 
by the multicellular region described by 

(5.5) 
and by a thin boundary-layer region containing steady secondary motion described 

A > 4.2 x 10-3Ra'.31(Ra - 5760)-4, 

4 x 104A:(l + 10-2A!) < Ra < 104A ( 1.5+, Y4) . (5.6) 
by 

Above the upper limit of (5.6), unsteady motion exists. The region of secondary 
motion described by (5.6) is in fact also valid for low aspect ratios as shown in figure 
3 and occupies most of the boundary-layer region defined by ( 5 . 2 ~ ) .  This is also true 
for 6 = 0.6, since for A < 8 the lower limit of (5.6) is then replaced by 

(5.7) Ra > 3.5 x 104Ai. 
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The reverse transition region, whose boundaries merge as A +  co for 8 < 1 ,  does 
not exist for e = 0.6 since in this case the boundaries merge near the upper limit of 
(5.1) as shown in figure 3. In fact, in this case, the approximate expression (5.5) and 
the lower limit of (5.6) are now replaced by 

so that strong multicellular motion is now present in this entire region. This large 
change for A $ 1 and for E = 0.6 is accompanied by a greatly reduced critical 
Rayleigh number for unsteady motion as indicated by the upper limit of (5 .2b ) .  The 
steady multicellular region is now confined to a narrow region between (5 .8)  and 
the upper limit of (5.2b). The other large non-Boussinesq change occurs in the 
transition to unsteady flow a t  low aspect ratios. This effect is due to a change 
in the physical nature of the instability and will be discussed later. 

6. Mass and heat constraints 
For small-scale convection problems in the low-Mach-number limit, it  has been 

shown (Paolucci 1982) that the pressure can be uncoupled into a spatially uniform 
static component p appearing in the equation of state (2.6) and energy equation (2.5), 
in addition to the small dynamic-hydrostatic component I7 which must be retained 
in the momentum equations (2.4). Thus the spatial density variations are due entirely 
to thermal gradients rather than acoustic wave effects commonly encountered in 
high-speed flows. 

The net vertical and horizontal mass fluxes can be written as 
1 

w = pvdx, 
0 

A 

at any y or x cross-section respectively. A t  steady state w = x = 0 so that (using (3.1) 
with 2 = 1 )  

J: (g) dx = 0, (6.3) 

J A  (i) dy = 0. 
0 

since p + 0. In the Boussinesq limit one can show that the solutions u, v and T -  1 
are antisymmetric about the centre point of the cavity, hence (6.1) and (6.2) with 
p = 1 yield no new information when applied to the cavity mid-sections. In  contrast, 
in the non-Boussinesq case, the problem has no such symmetry, and thus (6.3) and 
(6.4) are non-trivial constraints on the solutions at the mid-sections, as well as at  other 
sections. 

The constant-mass constraint 

can be used to obtain an expression for p 

j7 = A / J A  J 1  T-l dx dy, 
0 0  
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which is valid at all times. Even in the simple limits of constant properties, zero 
Rayleigh number and steady-state, where T is linear in x and e, p can be unity only 
in the Boussinesq limit s+O, and ji < 1 for any e $; 0, since 

p = 2e/ln - x 1 --ie2-&e4-... c "3 
in that case. The pressure corresponding to Sutherland-law conductivity in the 
conduction limit is more complicated (Chenoweth & Paolucci 1985). In general (for 

(6.8) 
fixed Prandtl number) T = T(1, x, y, 6 ,  Ra, A ) ,  

and the resulting pressure level depends on time as well as the three parameters e, 
Ra and A F = p(t ,  E ,  Ra, A ) ,  (6.9) 

and a rather complex behaviour results from (6.6). 
The net vertical heat flux can be expressed for any y cross-section as 

(6.10) 

which becomes 1 

q = p S  uax, (6.11) 
0 

in the fully developed region where aT/dy x 0. Then, using solutions for ji and 2' 

obtained by Chenoweth & Paolucci (1985) for steady state we obtain 

Ra 
360 

q X e-, (6.12) 

which is positive and proportional to both e and Ra (but independent of A). Note 
from (6.10) that  the same result is obtained in the Boussinesq limit (Batehelor 1954) 
by setting p = 1.  Since the horizontal heat flux in the fully developed region is 
&, = k a T / d x  x -2e (Chenoweth & Paolucci 1985) then 

(6.13) 

and the magnitude of q is comparable to that of Q, when Ka is approximately 720. 
Here, and in the following sections, the subscripts c,  n and b denote cwnduction, 
near-conduction and boundary-layer regions, respectively. Although the total heat 
flow a t  the hot wall is equal to that a t  the cold wall a t  steady state, the distributions 
of the local heat flux on the hot and cold walls in the developing end regions are no 
longer antisymmetric for non-Boussinesq cases, and they become more antisymmetric 
for increasing e or Ra. Notice that (6.13) shows that for low aspect ratios, but greater 
than 2 (see (5.4)), the conduction solution can only be valid for Ha values substantially 
less than 720 since the ratio between the vertical and horizontal heat flows must be 
negligible in that limit, i.e. 12q/A&,I 4 1 .  We note that (6.13) is independent of E ,  and 
(6.12) and (6.13) are the same as values obtained from Boussinesq equations, hence 
they are independent of property variations. 

I n  the independent boundary-layer region aT/ay =k 0, but it is approximately 
constant and independent of Ra. Specifically 

(6.14) 
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while the vertical velocity increases strongly with the Rayleigh number (Gill 1966). 
Thus a t  large Ra i t  can be expected that the term involving aT/ay in (6.10) is 
dominated by the term involving the vertical velocity. From the same numerous 
computations reported in detail in $8, we find that 

q x 0 . 1 4 ~ A R a ~ - ~ ~  (6.15) 

approximately describes the behaviour of the vertical heat flux in the independent 
boundary-layer region (5.1)-(5.2a, b )  within 13 yo. Actually the aspect-ratio de- 
pendence of q is more complicated than the simple linear one shown above. Within 

q x 0.46A&,. (6.16) 

where A& = jf Q dy is the total horizontal heat flow, and is given by (8.10). Also about 
63 yo ( 5 M 7  yo) of the total heat flowing in from the bottom half of the slot (virtually 
all of which is convected into the top half) is transferred out from the top half of the 
slot before the remainder returns to  the bottom half where i t  is transferred out. We 
find that, essentially independent of Ra, E and A (within the accuracy stated), 73 yo 
of the total heat comes into the slot from the bottom half of the hot wall and the 
same amount exits through the top half of the cold wall, consistent with the above 
picture. Here the nearly linear aspect-ratio dependence and Ra0.29 dependence in 
(6.15) is to be contrasted to  the linear Ra dependence of (6.12) which is independent 
of A in the fully developed region. 

6 Yo error 

7. Code validation 
Chenoweth & Paolucci (1985) give the exact non-Boussinesq conduction solution 

(Ra+O) for the temperature profiles, heat flux Q,, and the pressure level p, with 
Sutherland-law conductivity. Since Q, and j7, are used here to normalize our results, 
we reproduce those equations for convenience : 

Qc = 2(1+Sk)fJS(f1-fO), (7.1)  

where the subscripts 0 and 
and 1 respectively, and 

1 denote that the functions are to be evaluated at 2 = 0 

For E = 0.6, Q, is only 2 yo below the constant conductivity value of - 2 ~ ,  whereas 
p, is approximately 0.9904 or 14.4% above the constant property result of 0.8656 
obtained from (6.7). I n  the Boussinesq limit, Batchelor (1954) shows that (&JQ, - 1 )  
is proportional to  Ra2 for low Ra values (e.g. Ra < 500) and i t  is inversely 
proportional to A for large A .  In addition, Chenoweth & Paolucci (1985) derive exact 
non-Boussincsq solutions for the fully developed velocity profiles with Sutherland-law 
properties which are valid for a large parameter range. These exact solutions are 
generalizations of the well-known cubic solution (Batchelor 1954) valid in the 
Boussinesq limit. There are also well-established Boussinesq results (De Vahl Davis 
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1983) in the boundary-layer region and developing boundary-layer region for 
velocity, temperature and Nusselt number. The wide variety of results just mentioned 
are used to validate the computer program prior to the presentation of other 
non-Boussinesq results. 

7.1 .  Conduction and near-conduction regions 
For constant conductivity, the conduction solution is easily reproduced numerically 
for all E values due to the linear temperature profiles. However, for Sutherland-law 
conductivity, it is much more difficult to reproduce for large E since the temperature 
profiles become increasingly nonlinear near the cold wall, where an infinite gradient 
develops as E approaches unity. The pressure level is a good measure of the numerical 
resolution required to properly describe that region. Figure 4 presents p versus the 
number of grid points for E = 0.6, A = 1 ,  and several values of Ra. It is clear that 
in order to  obtain four significant figures accuracy for p, more than 80 grid points 
are needed in this highly non-Boussinesq case. Furthermore, i t  can be seen that 
Ra < lo2 is required in order to recover the conduction solution t o  the same level 
of accuracy. The results on figure 4 also show that the order of truncation error is 
near 2. 

We investigate the near-conduction region Ra < 5 x lo2 for A 2 1 and 0 < E < 0.6 
to better understand the detailed behaviour with each of the parameters. It was found 
that for large E ,  both the heat flux and the pressure depart from conduction values 
with the Ra2 dependence; also for A & 1 both (Qn-Q,) and @,,-ji,) have inverse 
A dependence although. their dependence on A is complicated as A + l  by the 
existence of a maximum for Nu, and a minimum for Is, near A = 1.65. This behaviour 
is shown in figure 5, which gives Nu,- 1 versus A for Ra = lo2 and two values of 
E .  The correlating equations 

accurately describe the behaviour just outlined. A major difference in Nu, = @,,/Qc 
and pn/jTc is the E dependence. The weak e5 dependence of Nu, can generally be 
neglected. However, the entire departure of ir, from 13, is due to non-Boussinesq 
effects described by the e3 dependence as shown in (7.4). For Ra > 5 x lo2 the Ra and 
A dependence of Nu - 1 andp/ji, - 1 are no longer the same, and both are significantly 
different from (7.3) and (7.4)’ as will be shown in the following sections. 

7.2. Fully developed region 
The conduction temperature profiles are actually valid for a much larger parameter 
region than that included in the conduction (Ra < lo2) or near-conduction 
(Ra < 5 x lo2) regions : 

(7.5) Ra < Ra, = 5760(1+0.434~)-~,  

(2 + Ra/400) 
A > A , =  

(1 -83) . 

Chenoweth & Paolucci (1985) derive the corresponding exact velocity profiles valid 
in this large parameter region. The solutions are valid only in the mid-region of the 
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FIGURE 4. Pressure versus number of grid points M in each coordinate direction for A = 1 , ~  = 0.6 
and various Rayleigh numbers: * * * * * ,  Ra = O(ezact); 0,  Ru = 10; 0, Ru = 50;  8, Ru = 100; 
m, Ra = 200. 
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NU, - 1 
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A 

FIGURE 5. Near conduction Nu,-1 versus A for Ra = 100; Numerical: a, E = 0.005, 
(3, E = 0.6. Equation (7.3) : - - - - -, E = 0.005, . . * . . . , E = 0.6. 

slot a few slot widths away from the ends. The condition (7.6) is required in order 
that the fully developed velocity profiles occur; the extent of the region where these 
profiles are fully developed and free of end effects is roughly given by (A-A, ) .  The 
exact solution not only displays most of the physical features which characterize 
non-Boussinesq problems, but it is also valuable to validate large computer programs 
in the highly non-Boussinesq regime. Such a comparison is given in figure 6 for the 
temperature and velocity profiles. Here only selected coordinate points for each case 
are shown, to aid clarity of presentation. The results are for 6 = 0.6 with the aspect 

I F L Y  169 
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FIGURE 6. Exact-solution profiles compared to numerical results for e = 0.6: ( a )  Temperature; ( b )  
Velocity. A = 3 :  $, R a =  0, R a =  1; 0,  R a =  lo2. A = 5 :  0, R a = 5 x 1 0 2 .  A = 2 0 :  
V, Ra = 3 x lo3. A = 40: A, Ra = 5 x lo2. 

ratio varied from 3 to 40 and the Rayleigh number varied from 10V to 3 x lo3 within 
the region bounded by (7.5) and (7.6). The results illustrate that the mid-slot profiles 
for temperatures are indeed conduction profiles and are independent of both A and 
Ra. The increased nonlinearity ofT near the colh wall, where a steeper gradient exists, 
is also evident in figure 6(a) .  Since the velocity in figure 6 ( b )  is scaled by Ra-', it 
is clear that v depends linearly on Ra and is independent of A in this region. The much 
thinner velocity layer on the cold wall compared to the hot wall is also very noticeable 
on the figure. The high-Ra results are approximately 3 yo below the exact solution, 
since the exact solution does not account for multi-dimensional end effects, thus 
causing j5 < P,. The use of (7.4) for Ra < 500, or some other result valid for Ra < Ra, 
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instead of p = p,, to extend the range of validity of the exact solution can correct 
for such effects if higher accuracy is desired for the validation. In fact for A > Rai, 
and with little loss of accuracy, we have found that (7.3) and (7.4),  describing the 
Nusselt number and pressure variations in the near-conduction region, can be 
extended up to Ra, given by (7.5), where standing waves transition occurs, by the 
following 

0 . 5 8 4 ( R ~ / 1 0 ~ ) ~  
(NU- 1) A = 1 +0.5(Ra/103)’ (7.7) 

0 .5e3( Ra/ 103)2 
(1 -F/Fc)A = 1 +2.4&(Ra/1O3)f’ 

7.3. Boussinesq boundary-layer results 
In this section steady-state Boussinesq results for Ra = lo3- los and A = 1 are 
compared to the numerical solutions of De Vahl Davis (1983). His solutions to the 
above problem, obtained via Richardson extrapolations, served as a ‘bench mark ’ 
for a comparison exercise (De Vahl Davis & Jones 1983). Table 2 gives our results 
obtained with square grids (Ax = 1 / M ,  Ay = 1/N and M = N )  varying in number 
from 11  to 101. In the table we present the average wall Nusselt number Nu, the 
maximum horizontal and vertical velocities urnax and v,,, at the mid-width and 
mid-height, and their respective y and x locations. The Nusselt number is obtained 
by averaging the heat flux over the hot and cold wall. At  steady state the results 
from the hot and cold wall agreed within the accuracy reported in the table and hence 
no labelling is necessary. Since fore 6 1 the problem displays full antisymmetry with 
respect to the centre of the cavity, only the positive velocity values are given. The 
values under ‘exact ’ are obtained by Richardson extrapolation using the three 
results given in the table, and as such are sixth-order accurate. 

The numbers is parentheses ( ) following the numerical results represent the 
magnitude of the percentage error between those results and the ‘exact’ values. Since 
the table values were rounded to four significant figures after calculating the errors, 
the errors in the table do not correspond exactly to the rounded numbers. Note that 
the errors in the table reflect the spatial second-order accuracy of the numerical 
scheme. The numbers in brackets [ ] following the ‘exact’ values give the magnitude 
of the percentage difference between these results and those of De Vahl Davis (1983). 
We note that De Vahl Davis used results of two differing grid sizes to obtain his 
extrapolated solutions, and hence his ‘exact ’ solutions are fourth-order accurate, 
since his scheme was also spatially second order. We also note that we compare our 
average wall Nusselt number with his Nusselt number averaged throughout the 
cavity, since his average values at the hot wall and at x = 0.5 were not equal. The 
magnitude of the percentage difference between our ‘exact ’ results and those of De 
Vahl Davis is approximately within his estimated errors of 0.1,0.2,0.3 and 1.0 % at 
Ra = lo3, lo4,  lo5 and los respectively. 

The importance of the above comparison is further appreciated if note is made that 
De Vahl Davis (1983) obtained his numerical results via a false transient integration 
of the Boussinesq equations using a vorticity-stream function formulation, while 
ours are obtained via a time-accurate integration of non-Boussinesq equations for 
E = 0.005 using a primitive variables formulation. 

For completeness, in table 3 we present similar results for A = 1, and for higher 
Rayleigh numbers within the steady boundary-layer region. It is noted that Le Quere 
& Alziary de Roquefort (1985), using a spectral method with 65 x 65 modes, obtained 

1-2 
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M 

Nu 
Urnax 

Y 
Vmax 
X 

M 

Nu 
Urnax 

Y 
Vrnax 
X 

M 
Nu 
Urnax 

Y 
Vmax 
X 

M 

Nu 
Urnax 

Y 
Vrnax 
X 

11 

1.121 (0.26) 
3.565 (2.29) 
0.8142 (0.13) 
3.598 (2.64) 
0.1766 (1.17) 

21 

2.264 (0.91) 
15.89 (1.84) 
0.8229 (0.02) 

19.29 (1.73) 
0.1175 (1.40) 

41 

4.567 (1.05) 
34.23 (1.56) 
0.8551 (0.05) 

67.71 (1.34) 
0.0653 (0.91) 

61 

8.988 (1.88) 
63.76 (1.76) 
0.8547 (0.57) 

216.1 (2.13) 
0.0372 (2.44) 

Ra = lo3 
21 

1.118 (0.05) 
3.620 (0.78) 
0.8133 (0.01) 
3.666 (0.80) 
0.1783 (0.22) 

41 

2.249 (0.24) 
16.10 (0.53) 
0.8231 (0.00) 

19.53 (0.50) 
0.1186 (0.48) 

61 

4.540 (0.45) 
34.51 (0.76) 
0.8549 (0.03) 

68.18 (0.66) 
0.0657 (0.30) 

81 

8.907 (0.96) 
64.18 (1.12) 
0.8528 (0.35) 

217.8 (1.36) 
0.0374 (1.92) 

Ra = lo4 

Ra = lo5 

Ra = lo6 

41 

1.118 (0.01) 
3.641 (0.22) 
0.8132 (0.00) 
3.687 (0.22) 
0.1786 (0.05) 

61 

2.246 (0.11) 
16.15 (0.24) 
0.8231 (0.00) 

19.58 (0.23) 
0.1189 (0.23) 

81 

4.531 (0.25) 
34.62 (0.44) 
0.8548 (0.02) 

68.37 (0.38) 
0.0658 (0.15) 

101 

8.874 (0.59) 
64.42 (0.76) 
0.8518 (0.23) 

218.8 (0.92) 
0.0376 (1.39) 

‘Exact’ 

1.118 [0.01] 
3.649 [0.00] 
0.8132 [0.02] 
3.695 [0.05] 
0.1787 [0.39] 

‘Exact’ 

2.244 [0.02] 
16.19 [0.05] 
0.8231 [0.01] 

19.62 [0.04] 
0.1192 [0.14] 

‘ Exact ’ 
4.520 [0.02] 

0.8546 [OM] 
68.63 [0.06] 
0.0659 [0.16] 

34.77 [0.11] 

‘Exact’ 

8.822 [0.25] 
64.91 [0.43] 
0.8498 [0.02] 

220.8 [0.65] 
0.0381 [0.61] 

TABLE 2. Convergence of the solutions for Ra = 103-106 in the Boussinesq limit. 

Ra 107 4 x 107 8 x  lo7 

Nu 16.82 23.85 28.57 
Urnax 146 252 305 
Y 0.881 0.934 0.937 
%ax 699 1390 1970 
X 0.0213 0.0153 0.0130 

TABLE 3. Boussinesq results for Ra = lo7-8 x lo7. 

Nu = 16.52, umax = 148.8, y = 0.879, wmaX = 699.3 and x = 0.0213 for Ra = lo’, and 
Nu = 23.82 for Ra = 4 x lo7 (they did not report maximum velocity data a t  the 
higher Rayleigh number). Again, our results are in excellent agreement with the above 
values. 

8. Boundary-layer region 
In  this section we examine the parameter space region included by (5.1), the upper 

limit of (5.2a) or (5 .2b) ,  and the lower limit of (5.3). This region includes most, but 
not all, of the independent boundary-layer and the developing merged boundary-layer 
regions. 
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8.1. Velocity and temperature jields 
Some steady-state results in the form of velocity and thermal fields are given first 
to show the effect of E throughout the above range of A and Ra. We note that in 
displaying the velocity fields we only show vectors on an interpolated matrix of 
25 x 25 evenly spaced grids in figures 7-10, and on a 51 x 51 grid in figure 11,  even 
though the number of computed values may be much greater and the computed grids 
non-uniform ; also the vector-length normalization is different in each figure. In 
displaying the temperature fields in the figures, we always display 21 isoline levels 
using equal increments regardless of the magnitude of 8. We finally note that in figures 
9(c) - (d)  and 10 we normalize the vertical scale to be the same regardless of aspect 
ratio, so as to show more detail in the horizontal direction for the lower aspect ratios. 

Figures 7 (a) - (d)  show velocity and temperature isolines for A = 1, Ra = lo5 and 
E = 0.005,0.2,0.4,0.6 within the region of secondary motion (see figure 3). The most 
apparent effect is the increasing asymmetry, which increases linearly with E .  There 
is a very pronounced shift of the centre of the primary vortex, which gives rise to 
the roll motion, both towards the cold wall and downwards towards the lower end 
of the cavity. The reason for this shift arises primarily from the source of vorticity 
due to buoyancy, i.e. (Ra P r / 2 ~ )  @/P) aT/ax. The temperature gradient is highest 
on the vertical walls, and the gas is colder near the right and bottom walls than near 
the left and top walls. The effect of this primary source of vorticity is modified 
somewhat from the presence of a secondary source not present in the Boussinesq case, 
i.e. -Vp x V(+u2). Note that this secondary source, in contrast to the primary one, 
is weakest near the vertical walls, where the gradients of density and velocity are 
nearly parallel. 

Figures 8 (a) - (d)  show similar results for A = 1, E = 0.6 and Ra = lo3, lo4, lo5, lo6. 
Here the boundary-layer thickness decreases on both hot and cold walls with 
increasing Ra in proportion to R a t .  This is of course accompanied by an increase 
in velocity as the boundary layers become thinner. The well-known (Elder 1965; Gill 
1966; Roux et aE. 1978; Schinkel, Linthorst & Hoogendoorn 1980) scaling for 
maximum velocity +0.22(RaA): at the mid-height y = ;A, valid in the E 4 1 limit 
in the independent boundary-layer region (5.1) and (5.2a), is easily modified to 
include the E dependence. The relatively weak linear E dependence can be described 

(8.1) 

(8.2) 

v+ = 0.22(RaA)t (1  - 10-3~Ra0.aA3), 

21- = -0.22 (RaA): (1 - 10-2eRa0-2A3), 

by 

showing a small reduction in velocity with increasing E in both cases, but a 
substantially larger reduction near the cold wall than is observed near the hot wall. 
The accompanying boundary-layer thinning can be observed from the location of the 
maximum velocity points 

x+= 1.2 (HA,): - (1+0 .82~) ,  

X- = 1 - 1.2 - (1 -0.75~A-f), 
( i a y  (8.4) 

which also show linear e dependence, but here it is a very significant effect. For given 
A and Ra the hot-wall layer thickens by a larger amount than the cold-wall layer 
thins out. The cold-wall layer has an additional A dependence which causes further 
reduction in the shift towards the wall for A > 1. 
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FIGURE 7(a, b ) .  For caption see facing page. 

The results for the independent boundary-layer region given by (8.1)-(8.4) are 
substantially different from those found in the fully developed region defined by (7.5) 
and (7.6), where everything is independent of A ,  although the linear dependence on 
E is similar. I n  this region the velocity scales linearly with Ra for all E (see Chenoweth 
BE Paolucci 1985) ( 1 + 6 ~ 1 0 - ~ e ) R a  

7 2 4 3  ' 

- ( 1 - 3 x  10-2e)Ra 
7 2 4 3  

v+ = 

v- = 

However, compared with (8.1)-(8.2), the positive maximum in (8.5) shows a linear 
increase with E while the negative maximum in (8.6) shows a smaller linear decrease 
with E .  Also the linear shift of these maxima locations toward the cold wall with E 

is independent of Ra and given by 

x+ = 0.21 l (1  + 0.7064, (8.7) 

5- = 1.0-0.211(1-0.739~), (8.8) 
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FIGURE 7. Velocity and isotherm fields for A = 1 and Ra = lo6, with E as the parameter; 
(a)  E = 0.005, ( b )  E = 0.2, (c) E = 0.4, ( d )  E = 0.6. 

so that, compared with (8.3)-(8.4), the effect of E is slightly less here, and the negative 
maximum shifts more than the positive maximum. 

As a final observation, from figures 8(b)-(c) we see the appearance in the core of 
the cavity of two weak vortices giving rise to secondary motion inside the primary 
roll. Their appearance is a direct consequence of changes in sign of the primary source 
of vorticity. This is due to the occurrence of inversions in the horizontal temperature 
gradient near the edges of the boundary layers (Mallinson & De Vahl Davis 1977). 
The presence of a secondary source of vorticity, due entirely to non-Boussinesq effects, 
modifies the above picture somewhat. In addition, viscous diffusion retards the 
development of these secondary rolls to a higher Rayleigh number. 

Figures 9 (a)-(d)  give velocity and temperature isolines for E = 0.6, Ra = lo5 and 
A = 1, 2 , 4  and 6. For B = 0.005 we observe secondary rolls for Ra in the range given 
by (5.6) and (5 .2a) ,  while for E = 0.6 they are observed in the range given by (5.7) 
and (5 .2b ) .  Note that the multicellular region and the region of secondary flow, which 
were distinct in the Boussinesq limit, merge near the lower boundary of the region 
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FIGURE 8(a, b ) .  For caption see facing page. 

defined by (5.8). For Ra = lo5, between A = 7 and 8, there is a shift from weak 
secondary motion to strong cellular motion, as can be seen in figure 10. Evidently, 
as can be seen from figure 3, the condition of Ra/A > 2.5 x lo4 put forth by Schinkel 
et al. (1980) for A > 2 and for perfectly conducting end walls as necessary for the 
appearance of secondary rolls is modified. The A = 7 case is near the top of the 
independent boundary-layer region for e = 0.6 (see figure 3). For substantially larger 
Ra we enter the travelling-wave region and for substantially smaller Ru we enter the 
interacting boundary-layer region. 

It was mentioned in the discussion of flow regions described by figure 3 that a large 
non-Boussinesq effect involves the replacement of (5.5) by (5.8) fore = 0.6. This limit 
describes the lower limit of multicellular motion and it shows that such motion occurs 
at much lower aspect ratios than in the Boussinesq case. Below the region defined 
by (5.8) and for Ra satisfying (5.7), stable steady-state motion with a single primary 
roll exists, provided the Ra value is not so large that the flow becomes unsteady. 
During the transition to steady state, unstable motion is observed in the bottom-end 
region for aspect ratios as small as 3 for Ra = lo5 and 6 = 0.6, even though the flow 
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FIGURE 8. Velocity and isotherm fields for A = 1 and a = 0.6, with Ru aa the parameter; 
(a) Ru = los, ( b )  Ru = lo4, (c) Ru = 106, ( d )  Ra = lo8. 

returned to a stable steady state with a single primary roll (Chenoweth & Paolucci 
1986). This phenomenon is observed for aspect ratios as large as 7, whose steady-state 
results are displayed in figure lO(a). However, for A = 8 shown in figure 10(b) an 
intense vortex is centred near y = 2.5. Similarly figure 1O(c)  for A = 10 shows two 
intense vortices, one centred at y = 2.5 and another at y = 5.5. For comparison, figure 
10(d) shows the result for 8 = 0.005, Ra = lo5 and A = 10. Thus in the Boussinesq 
limit only a single primary roll exists for quite large aspect ratios. Even though the 
average heat transfer for figures lO(c) and (d) is approximately the same, the local 
heat transfer is much higher in the vicinity of the vortices when 6 = 0.6. 

The other large non-Boussinesq effect occurs at low aspect ratios in the transition 
to  unsteady flow. If one considers the internal Froude number (see Paolucci 1986) 
of the warm fluid turning at the top corner, if the flow is subcritical it  spreads out 
smoothly over the heavier fluid as the intrusion approaches the cold wall. If the flow 
is supercritical a 'hydraulic ' jump will occur. The energy loss associated with the jump 
is dissipated in a stationary wavetrain downstream of it. This is illustrated in figure 
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FIQURE 9(a, b) .  For caption see facing page. 

11, where we show the results for E < 1, Ra = 8 x lo7 and A = 1. If the flow is highly 
supercritical these waves break, resulting in an unsteady disordered interface 
downstream. Paolucci (1986) shows that for E < 1 ,  the flow should become highly 
supercritical and unsteady at Ra = C J ~ - ~ ,  with G = lo7 - lo8. This estimate is 
consistent with figure 3, where we obtain C w lo8. For A > 4 the vertical walls begin 
to interact with the waves to the extent that the vertical-wall boundary layers become 
unstable before the flow becomes highly supercritical, explaining the change in slope 
of the line of oscillatory instability as A increases. This scenario is identical to that 
at the lower right corner because of the antisymmetry in the Boussinesq limit. In 
the non-Boussinesq case, the cold-wall boundary layer is always thinner than that 
at  the hot wall. For E = 0.6 the cold-wall boundary layer is much thinner than the 
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FIGURE 9. Velocity and isotherm fields for E = 0.6 and Ra = lo6 with A as the parameter; 
(a) A = 1, (a) A = 2, (c) A = 4, ( d )  A = 6. 

corresponding one for the Boussinesq case, and always becomes unstable before the 
internal Froude number becomes highly supercritical. This result explains the strong 
dependence on E of the slope of the line of oscillatory instability at low aspect ratios 
to a slope of A-'.'. 

In the independent boundary-layer region, a nearly linear vertical thermal 
stratification exists in the core of the cavity (see figures 7-9, 11). The vertical 
temperature stratification parameter, 

is given versus Ra in figure 12(a) for A = 1 and 2, and E = 0.005, 0.2, 0.4 and 0.6. 
To remove any ambiguity in the definition of BA due to temperature nonlinearities, 
the slope of the temperature at y = +A was used to evaluate (8.9). In figure 12(a) it  
can be seen that although 0.4 < BA < 1.0 when Ra = lo3, BA rapidly approaches 
unity for larger Ru values. Also notice that little E dependence exists for Ra >, lo4, 
and that which is present at Ra = lo3 shows opposite trends for A = 1 and 2. This 
effect is related to the maximum in heat transfer occurring between A = 1 and 2 (see 
(7.3) and (8.10) below). Additional results of BA for A = 1 ,  2, 3, 5 and 10 are shown 
on figure 12(b) for E = 0.005 and E = 0.6, showing also that E does not significantly 
affect BA at any aspect ratio or Ra value contained in the independent boundary-layer 
region (5.1) and (5.2a, b). The results on figures 12 (a) and (b) agree well with the large 
body of similar Boussinesq results previously reported (De Vahl Davis 1968; 
Duxbury 1979; Eckert & Carlson 1961 ; Elder 1966; Raithby & Wong 1981 ; Roux 
et al. 1978). We note here that for A 2 4 ,  8A correlates with RaA-t and for 
RaA-4 >, 500 is nearly constant (Duxbury 1979; Roux et al. 1980). 
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FIGURE 10. Velocity and isotherm fields for Ra = lo6 showing E and A effects; 
(a )  E = 0.6, A = 7, ( b )  e = 0.6, A = 8, (c) E = 0.6, A = 10, ( d )  E = 0.005, A = 10. 
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FIGURE 11. Velocity and isotherm fields for E = 0.005, A = 1, and Ra = 8 x lo7. 

8.2. Nusselt number and pressure correlations 
The Nusselt-number results shown in figure 13 can be adequately correlated for 
Ra 2 lo3 by a power-law expression of the form 

(8.10) 

Here the a and b depend on aspect ratio A and are nearly independent of e, so that 
only QC accounts for the e dependence of @b. The results for 1 < A < 5 are correlated 
by the values of a and b shown in table 4 with a correlation coefficient r = 0.9997, 
although (8.10) is valid but less accurate for A well outside this range. 

In  the interacting and independent boundary-layer regions for Ra 2 lo3 and 
satisfying (5.1), the results can be described by the expressions 

a = 0.324A-f(l -nA-n)n ( n  = 0.7), (8.11) 

b = 0.05(5+A-'), (8.12) 

with a maximum error of f3 .5%.  
The pressures shown in figures 14 and 15 have a more complicated behaviour than 

the Nusselt numbers; they start from a plateau at low Ra, and near Ra = lo3 they 
fall rapidly with increasing Ra until a minimum is reached, and then at large Ra they 
return to another plateau that is lower than the original one by an amount depending 
on e. This complicated behaviour can be described for Ra 2 lo3 by the expression 

%/pc = { l - A y  exp[B(XF-X)N (x-xO)]>, (8.13) 

where X = log,, Ra, (8.14) 

and (8.15) 

Here X, is the value of X where the final pressure level is first crossed during the 
fall to the pressure minimum which is reached a t  XM. The final pressure level is 
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FIQURE 12. Vertical temperature stratification parameter OA versus Ra. (a) A = 1 : 0,  E = 0.005; 
0 , ~ = 0 . 2 ; . , ~ = 0 . 4 ;  + , ~ = 0 . 6 . A = 2 : a , ~ = 0 . 0 0 5 ;  X , E = O . ~ ; ~ , E = O . ~ ; V , E = ~ . ~ . ( ~ )  
~ = 0 . 0 0 5 :  0,  A = 1;  A, A = 2 ;  0,  A = 3;  0 ,  A = 5;  x ,  A = 10. E =  0.6: + , A  = 1; V, A = 2 ;  
O , A = 3 ;  . , A = 5 .  

approached near X, FZ 7 .  For large aspect ratios the minimum pressure and the final 
plateau cannot be reached within the laminar boundary-layer region, but for the 
region under consideration here the functions 

3 0.23 6.73 
2 A + -  

N = (8.16) 
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FIQURE 13. Nu versus Ra and A and E as parameters. (a) Numerical: E = 0.005: 0, A = I ;  A, 
A = 3 ; V ,  A = 10. E = 0.6: 0, A = 1 ;  + , A  = 3; x ,  A = lO.Equation(8.21):-, A = 1 ;  . . * . . * ,  
A = 3 ;  ---, A =  10. (b )  Numerical: ~ = 0 . 0 0 5 :  0,  A = 2 ;  0, A = 5 .  e = 0 . 6 :  0, A = 2 ;  
A, A = 5. Equation (8.21): -, A = 2;  . . . . . ., A = 5. 

and X, = 3.3+0.65 lnA, (8.17) 

adequately describe N and X,. The difference between the initial and final pressure 
plateau is described by 

A Y  = ( $ E ) ~ ,  (8.18) 
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~ ~~ 

A U b 

1 0.1448 0.2969 
2 0.1853 0.2727 
3 0.1880 0.2657 
5 0.1803 0.2615 

TABLE 4. Values of the parameters a and b in equation (8.10) as functions of aspect ratio. 
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FIGURE 14. ji/& versus Ra; (a) A = 1 ,  ( 6 )  A = 2. Numerical: 8 ,  E = 0.2; @, E = 0.4; 
m,~=0.6.Equation(8.22):---,~=0.2; - . * , ~ = 0 . 4 ; - , ~ = 0 . 6 .  
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Ra 

FIQURE 15. p/pc versus Ru for E = 0.6. Numerical: 9, A = 3; H, A = 5 ;  E, A = 10. 
Equation (8.22): -, A = 3; . . . , A = 5 ;  ---, A = 10. 

and the rate of change between the pressure levels can be specified by 

B =  Bo[1+2.62(;y], (8.19) 

where 
6.28 x 10-2(A - 1)L+o.28 

( A - ~ ) L + L X  10-3 . 
a B, = 2.20 x 10-5+ (8.20) 

The value of L = 4 gives the proper behaviour for all A 2 1. Although (8.16), 
(8.19) and (8.20) have a complex A and E dependence, notice that for A 2 3, B 
becomes independent of E and is in fact only a simple power law, where 
B x B, x 0.063(A- l)0-2s results. Similarly the A-* term in (8.16) becomes negligible 
for A 2 3 so that most of the aspect ratio complexity is confined to the region 
1 < A < 3 as it was for the Nusselt number ; note that for A 2 2, N is almost constant 
over a wide range of A (1.41 < N < 1.5). The expressions (8.13)-(8.20) correlate the 
pressure results to within & 0.05 % error. The maximum pressure change is about 6 Yo 
total when E < 0.6, where the Nusselt number varies from unity to values as large 
as 18. Although the total pressure variation (required for mass conservation) is small, 
any inaccuracy in its computation would result in much larger errors in velocity. This 
fact is best illustrated by looking at the analytical solution in the fully developed 
merged region. 

8.3. Nusselt number and pressure correlations in the combined regions 
The Nusselt number, given by (&lo), approaches zero as the Rayleigh number 
approaches zero. Since the correct limiting behaviour is given by expression (7.3), it 
is desirable to determine a single expression for Nu valid over the entire stable laminar 
Ra range described at the beginning of this section. 

This can be done without much loss in accuracy for Nu- 1 if the Nusselt number 
has the form 

Nu=-=Nub+(N~,-Nu,,)exp[-5x102(Nu,-l)3], Q (8.21) 
Q, 
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which is simply a blending of functions (7.3) and (8.10) across 5 x lo2 < Ra < lo3, 
and Q, is given by (7.1).  Clearly this expression has the correct asymptotic behaviour 
for small Ra because this is included properly in Nu, and it extends up to the point 
where unsteady motion first occurs via Nu,. The lines in figures 13(a) and ( b )  show 
(8.21) compared to specific numerical results for A = 1,2 ,  3 , 5  and 10 with B = 0.005 
and 0.6. As apparent from these figures, the Nu dependence on E is negligible. 

The analogous expression to  (8.21) for over the same region is given by 

(8.22) 

in terms of%, j7, andp, given by (7.2), (7.4) and (8.13) respectively. This expression 
is compared with specific numerical results for c = 0.2, 0.4 and 0.6 for A = 1 and 2, 
on figures 14(a) and ( b ) ,  respectively. Similarly figure 15 gives results for A = 3, 5 
and 10 with E = 0.6. As can be observed from these figures, the Rayleigh number 
at which the minimum pressure is obtained is only a function of aspect ratio and can 
be obtained from (8.14)-(8.17). 

9. Comparison of results 
A more thorough comparison of the present results with other published data is 

given in this section. 

9.1. Flow regions 
Varying amounts of theoretical and experimental information relating to flow-region 
classification in the Boussinesq limit and near-Boussinesq limit can be found in 
Batchelor (1954), Bergholz (1978), Duxbury (1979), Eckert & Carlson (1961), Lauriat 
(1980), Lee & Korpela (1  983), Mordchelles-Regnier & Kaplan (1963) , Polezhaev 
(1968), and Yin, Wung & Chen (1978). Much of the difference in the flow-region bounds 
can often be related to the use of different criteria for the classification, although in 
some cases poor numerical resolution or experimental difficulties are responsible for 
the differences. A somewhat different picture will emerge if velocity field rather than 
thermal field or heat transfer information is used. Here the velocity field behaviour 
was used to construct figure 3, as was previously described. I n  general the results 
on figure 3 agree better with the published literature in the region A < 12 than for 
the higher aspect ratios. 

Our location of the unsteady transition, displayed in figure 3, is defined by the upper 
limit of ( 5 . 2 ~ ) .  The results of Mordchelles-Regnier & Kaplan (1963), for A < 12 and 
extending down to aspect ratios as low as 1.67, predict that the critical Rayleigh 
number varies with Most of the disagreement with our results is a t  the 
lower aspect ratios, where we show an A-3 dependence. We note that as the 
aspect ratio is decreased, heat losses from the ends become more and more important 
and cause instabilities to occur a t  a lower value of Rayleigh number. Apparently, 
these end losses are responsible for their weaker dependence on aspect ratio. We 
have much better quantitative agreement with results obtained by linear stability 
analysis by Bergholtz (1978). I n  making this comparison we have made use of the 
fact that  the stratification parameter, defined by (8.9), is near unity in this region. 
His results do show that the critical Rayleigh number varies approximately with 
aspect ratio as A-3 for A < 6. We note that the result obtained from Bergholtz’s 
analysis arises from a travelling-wave instability along the sidewalls. However, we 
previously offered possible explanation for the AP3 behaviour due to a ‘hydraulic’ 
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jump instability on the endwalls. The experimental results of Ivey (1984) for Pr = 7.1 
and A = 1 clearly indicate the presence of a ‘hydraulic’ jump and a stationary 
wavetrain downstream of i t  when the Rayleigh number is above the critical internal 
Froude number. His observations are in complete agreement with our results, an 
example of which is shown in figure 11. However, we know of no other results which 
show that for low A in the Boussinesq regime the instability is due to wave-breaking 
arising from the ‘ hydraulic ’ jump rather than the travelling-wave instability arising 
for larger A .  

Bergholtz’s (1978) results also show that there is a minimum critical Rayleigh 
number for oscillatory instability, occurring a t  1.15 x lo5 at an aspect ratio near 12. 
This compares well with our minimum of R a  = 2.4 x lo5 also occurring near A = 12. 
At aspect ratios larger than 12 our results show that the stratification parameter is 
nearer 0.5, and the critical Rayleigh number is approximately linear with A .  This 
picture is in good agreement with the travclling-wave instability from steady to 
unsteady motion given by Bergholtz (1978), and consistent with experimental data 
of Mordchelles-Regnier & Kaplan (1963) for 12 < A < 25. 

Results of Lee & Korpela (1983), and Lauriat (1980) show that in the Boussinesq 
limit, for R a  x lo4 the flow changes from unicellular to  multicellular motion as the 
aspect ratio is increased. They observe the transition to occur near A = 11-12, in 
agreement with the minimum aspect ratio shown in figure 3. 

Still in the Boussinesq regime, Bergholtz (1978) also obtained critical Rayleigh 
number corresponding to the standing-wave or stationary transition from fully 
developed merged boundary layers to  steady multicellular motion. He found this 
value to be approximately 5740, which again compares very well with our value given 
by (7.5) for E + O .  However, Lee & Korpela (1983), using 17 grid points in the 
horizontal direction, obtain this transition between 7100 and 7810 for A = 20, which 
is much higher than our and Bergholtz’s results. They explain this disagreement by 
noting that for large but finite aspect ratios of order 20 there is a small positive 
vertical stratification through the cavity, since the boundary layers are not yet 
completely developed, and Bergholtz shows that the flow is stabilized with increasing 
stratification. Even though this argument correctly explains why for lower aspect 
ratios the critical Rayleigh number should increase, we have not observed a 
substantial increase until A < 20. I n  fact, our calculation for Ra = 7100 and A = 20 
shows multicellular motion, in agreement with the results of Roux et al. (1980) 
obtained by using a higher-order scheme. A better explanation for the disagreement 
is that Lee & Korpela lacked sufficient horizontal resolution. 

The lower bound on the fully developed boundary-layer region A > Ra/500 given 
by Batchelor (1954) agrees with figure 3 for large Ra but differs substantially a t  low 
Ra,  since fully developed boundary layers at the mid-height plane cannot be 
developed for A c 2 even if Ra and E approach zero. 

Finally, Polezhaev (1968) constructed a fairly complete picture of the flow 
regions for the same A and Ra ranges shown on figure 3. I n  spite of the very coarse 
grids used, the regions where calculations were made and those where he used data 
from Eckert & Carlson (1961) as well as Elder (1965) are in qualitative agreement 
with figure 3. However, in the regions where he extrapolated the bounds there is 
substantial disagreement, particularly where both A and Ra are large and where both 
are small. The same statement applies to  the regions plot given by Yin et al. (1978), 
since only a band of results extending from low R a  and high A to  high Ra and low 
A were used to locate lines which were then extrapolated across the other regions. 

Roux et al. (1980) found, in the Boussinesq limit, that  a small region of reverse 
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transition from multicellular to unicellular flow exists within the lower right corner of 
the region defined by A >, 12 and lo4 < Ra < lo5. We note that this region corresponds 
to the narrow region separating stationary and oscillatory stability branches, for a 
narrow range of stratification parameter, as given in figure 3 of Bergholtz (1978). We 
have verified the existence of this narrow region for 6 + 1 .  However, as e increases, 
this region quickly disappears and, as suggested by the dashed line in figure 3, this 
region does not exist for B = 0.6. 

9.2. Conduction solution 
It was previously pointed out that Chenoweth & Paolucci (1985) give the exact 
solution for the conduction limit (Ra+O). It was also stated that those results showed 
that the heat flux Qc,  as given by (7.1), is not greatly different from the constant 
conductivity value of - 2 ~ ,  so that the average heat flux could be normalized by either 
to give the Nusselt-number results without serious error. It was also shown that the 
pressure level is significantly different for Sutherland-law and constant conductivity 
given by (7.2) and (6.7) respectively. The exact-solution results can be used to 
evaluate limiting results from numerical calculations. This was done in this paper. 
Unfortunately, Leonardi & Reizes (1979, 1981) used the pressure solution (6.7), 
obtained by use of constant conductivity, to explain their numerical results obtained 
using Sutherland-law conductivity. They expected to obtain agreement at low Ra 
values where they stated that linear temperature profiles should exist; of course, the 
temperature profiles are highly nonlinear near the cold wall with increasing B ,  and the 
value of jic given by (7.2) is very sensitive to values of conductivity there, so that 
the constant-conductivity result (6.7) is much lower than that obtained from the 
Sutherland law. Leonardi & Reizes (1979) were puzzled by the apparent better 
agreement of their numerical results with (6.7) for large Ra than a t  low Ra where 
it should occur. This fortuitous result is related to the linearly stratified core region 
with nearly uniform horizontal temperature at large Ra. We note that Leonardi & 
Reizes use a complicated vorticity-stream-function formulation to compute their 
results, and it appears that the term giving rise to the secondary source of vorticity 
-Qp x V(?p2) was not correctly given in their equations. This error does not appear in 
Leonardi & Reizes (1981). There, using some irrelevant scaling changes (to be 
discussed shortly), they stated that good agreement was obtained between numerical 
results and (6.7) over the entire Ra range. As shown earlier, the numerical results 
obtained here do asymptotically approach the proper exact solution as Ra+O, rather 
than the much lower result (6.7), for all E provided a sufficient number of grid points 
are used to  give the resolution required. It does not appear, however, that the results 
of Leonardi & Reizes (1979, 1981) at low Ra approach either (6.7) or the exact solution 

9.3. Near-conduction results 
(7.2). 

Batchelor (1954) estimated that in the Boussinesq limit for large A and small Ra 

Ra2 
NU,- 1 x lo-*- 

A ’  

which he believed to be valid for Ra < lo3. Later Poots (1958) used numerical 
calculations for E + 1, A = 1 and Ra = 5 x lo2 and lo3 to show that 

Nu,- 1 x 5 x 10-8Ra2, (9.2) 

for Ra < lo3. More recently Roux et al. (1978) used more accurate numerical results 
for E < 1,  A = 1 and Ra = lo2, 5 x lo2 and lo3 and state that they ‘agree with’ Poots’ 
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results. Actually there is substantial difference between the results of Poots and Roux 
et al., so that the corroboration is not justified. In  fact, the data of Roux et al. agree 
better with (7.3) than with (9.2). For A = 1, (7.3) gives 

Nu,- 1 w 1.46 x 10-7Ra2, (9.3) 

and for A % 1,  it  yields 

Ra2 
A ’  

Nu,- 1 x 5.84 x (9.4) 

so that the constant of proportionality is not only highly dependent on A but is also 
much larger than has previously been reported. This is due to the fact that accurate 
results for several points with Ra < 500 must be used to determine the constant for 
each value of A. 

9.4. Bounda y-layer region 
The present results have already been validated for large E using results from exact 
solutions in the conduction limit and in the fully developed merged boundary-layer 
regime, as well as the established Boussinesq limit in the boundary-layer region. Here 
some additional discussion of the effects of B on the results is given. 

The only known data for E as large as 0.6 and lo3 < Ra < lo6 which can be 
compared with the present results are those of Leonardi & Reizes (1979, 1981). Their 
steady-state results were obtained by means of a false-transient method for solving 
the Navier-Stokes equations using a vorticity-stream-function formulation. Their 
earlier results for N u  showed considerable E dependence (as much as 33% at large 
Ra) as E varied from the Boussinesq limit 0.0018 up to 0.6. Their later paper showed 
only 10 % dependence for 0.005 < E < 0.5 on a much reduced Ra range. The reason 
for the E dependence in either their earlier or later work is not clear, since the present 
results in figure 13 show little or no €-dependence. Only about 2 Yo of the difference 
can be attributed to their use of the constant-property conduction heat flux to 
normalize their average heat flux obtained with Sutherland-law properties. 

The pressure levels given by Leonardi & Reizes (1979) for A = 2 consistently fall 
much lower than those reported here on figure 14. In  many cases they reported a 
pressure drop approximately a factor of two larger than is obtained here. We do not 
have an explanation for this discrepancy. There is certainly a question regarding the 
lack of resolution present for the coarse (17 x 17) and (33 x 33) uniform grids used 
to produce their results for similar parameter values where (81 x 81) were found to 
be necessary here. Unfortunately, lack of resolution in the present results produced 
pressures even higher than those shown on figures 14 and 15. Just as puzzling are 
their later pressure-level results for A = 1, where good agreement with (6.7) is 
obtained for all Ra and all E ,  even though (6.7) is valid only for low Ra and constant 
conductivity rather than the Sutherland-law variation they used ; it also appears that 
the definitions of ji, Ra, and E used there were altered due to an unimportant but 
confusing change of the reference temperature from the average t(Th+ q), as is used 
here and in their earlier paper, to the cold wall value T,. This change in reference- 
temperature definition makes their later results for j j  greater than unity, and Ra and 
E values appear to be larger than the equivalent values given in their earlier paper. 
The most plausible explanation for the N u  and ji discrepancies between their results 
and ours involves the possibility that their results had not yet reached steady state. 
This is possible since they apparently used only the criterion that the average hot- 
and cold-wall Nusselt numbers be approximately equal to indicate steady state. We 
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have found that this criterion must be supplemented by the additional condition 
p + p ( t )  for large e. That is, usually the hot- and cold-wall Nu values became 
approximately equal and then drifted together to  their final value while the pressure 
adjusted on a much longer timescale to its final steady-state level. In  fact we have 
found that steady state was  approximately achieved when the non-dimensional time 
obeyed the following empirical inequality : 

Note that the Rayleigh-number dependence in (9.5) is the same as that given by 
Patterson & Imberger (1980), who used scaling arguments to  predict when the flow 
reaches steady state ; however, our aspect-ratio dependence is weaker than theirs since 
they show that it varies as A:. The difference in the aspect-ratio dependence may be 
attributable to the fact that  in the scaling analysis the fluid entrained by the 
boundary layers is assumed unstratified. Clearly, the error in this assumption 
increases with time. We point out that  calculations near the critical Rayleigh 
numbers to unsteady flow require times much larger than that given by (9.5) in order 
to observe whether small perturbations decay or amplify. 

As noted by Eckert & Carlson (1961) and Elder (1965), among others, the 
non-interacting boundary layers in a slot grow similar to that of a single flat plate. 
Following Eckert & Carlson, if the assumption is made that the boundary layers are 
locally similar, and if we take the stratification parameter OA = 1 (see (8.9)), then 
the heat transfer can be obtained approximately by using the similar solution given 
by Hara (1958), and independently by Spa,rrow & Gregg (1958), for laminar flow of 
air on a vertical flat plate with large temperature difference. To that end, if the linear 
temperature profile in the middle of the slot, obtained from (6.14), is introduced into 
Hara’s Nusselt-number variation, we can compute the average heat transfer in the 
slot. The result is 

Nu, = -0.272 - - ( 1  -0.08254, (:):: 
where Q, is given by (7.1). We note that in obtaining (9.6) end effects have not been 
properly accounted for since the linear stratification was assumed to hold over the 
whole height of the cavity. Nevertheless, heat-transfer results obtained from (8.10) 
and (9.6) differ by at most 20 yo over the entire boundary-layer regime. The important 
conclusion that can be drawn from (9.6) is that results for e = 0 and 0.6 differ by only 
3 yo. If a more realistic value of OA < 1 had been used, the E dependence would be 
weaker, and i t  would be weaker still if the slightly different similarity solution 
obtained by Sparrow & Gregg had been used, since by using a different procedure 
to Hara, they obtain a slightly weaker e-dependence. Equation (9.6) thus supports 
our conclusion that any e-dependence in heat transfer is very weak. 

10. Conclusions 
The numerical solutions to the Navier-Stokes equations given here contribute to  

the physical understanding of a classical convection problem for a broad range of 
parameters. The solutions were validated by means of limiting exact solutions as well 
as the vast body of literature on the well-established Boussinesq limit. 

Although the average Nusselt number (defined using the proper conduction 
solution) is almost independent of the temperature-difference parameter, the velocity 
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and temperature fields as well as the pressure level show significant dependence on 
this parameter. The total pressure variation in all cases is small; however, any 
inaccuracy in its computation, arising from lack of mass conservation, results in much 
larger errors in velocity. It also appears that the critical Rayleigh numbers for 
stationary and oscillatory instabilities are lowered with increasing temperature 
difference. In  addition we observe that in some cases the physical nature of the 
instability is different. This is an area where further investigation is needed. It is clear 
that there can be considerable risk if results obtained from the well-established 
Boussinesq limit are extrapolated for use where large temperature differences exist. 
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